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Abstract
We establish sufficient conditions for the boundedness of the trajectories and the
stability of the fixed points in a class of general nonlinear systems, the so-called
quasi-polynomial vector fields, with the help of a natural embedding of such
systems in a family of generalized Lotka–Volterra (LV) equations. A purely
algebraic procedure is developed to determine such conditions. We apply our
method to obtain new results for LV systems, by a reparametrization in time
variable, and to study general nonlinear vector fields, originally far from the
LV format.

PACS numbers: 4530, 0230, 0545

1. Introduction

The study of the global stability of fixed points of a continuous dynamical system is a very
important issue in the qualitative analysis as this property implies several restrictions in the
evolution of the trajectories (Mclachan et al 1998, Figueiredo et al 2000). Here, stability is
meant in the sense of Lyapunov (1949), where the stability of the fixed point is granted by
the existence of a positive-definite function, known as Lyapunov function, in a neighbourhood
of the fixed point, such that its total time derivative is negative-definite (or semidefinite).
Furthermore, the boundedness of the solutions can be established by LaSalle’s invariance
principle (LaSalle and Lefshets 1961). The major drawback of this approach is the lack of a
general prescription for the determination of the Lyapunov function (Haykin 1999), with few
exceptions (for example, a monotonously decreasing energy for non-conservative systems).
Nevertheless, for quadratic systems of Lotka–Volterra (LV) type, commonly used in the study
of population dynamics, a natural candidate for the Lyapunov function is known: see, for
example, Takeuchi (1995) and references therein. One of the main purposes of this paper is to
show how to extend the results obtained for LV systems to more general dynamical systems,
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the quasi-polynomial systems, by recasting the latter in a LV canonical format, as explained
below.

In the last 20 years many authors have shown how to cast a wide class of dynamical systems
into universal formats, usually by increasing the dimension of the original system (Brenig 1988,
Brenig and Goriely 1989). One such format that has drawn some attention is the system of
quasi-polynomial (QP) ordinary differential equations (Figueiredo et al 1998, 1999). All these
formats have in common that they can be related to a quadratic LV system of the type found in
models of biological population dynamics systems. The QP format is particularly useful, as
its reduction to the LV system is obtained by an embedding plus a quasi-monomial coordinate
transformation (see section 3), which allows in a direct way the study of the topology and
of the dynamics in the original phase space from those of the associated LV system (Brenig
1988).

The main purposes of this paper are to present a new approach to determine existence
conditions for Lyapunov functions in systems of ordinary differential equations of the QP type
and to establish the boundedness of its solutions and the invariance of the orthants. The basis
of the method consists in the generalization of a theorem, originally concerning LV systems,
to encompass the QP systems. This theorem furnishes sufficient conditions for the stability
of the fixed points and then our approach delivers a systematic but not exhaustive method for
the determination of Lyapunov functions in QP systems. Furthermore, we show how a special
reparametrization in the time variable allows us to enlarge the scope of applications. This will
lead to new existence conditions of Lyapunov functions in purely LV systems, involving its
linear terms, while in the original theorem only the quadratic terms are involved.

This paper is structured as follows. In section 2 we review the results of Redheffer and
Walter (1984). In section 3 we present the relationship between the QP systems and the LV
systems, and show how to obtain, in a constructive way, a Lyapunov function for a QP system.
In section 4 we present an algorithm to establish purely algebraic conditions for the existence
of the Lyapunov function. In section 5 we establish new results for the LV systems by a
suitable reparametrization in the time variable and we obtain new conditions for stability in
the May–Leonard system. In section 6 we present an application for a typical QP system. In
section 7 we discuss a numerical extension of our method. Finally, in section 8 we close with
some concluding remarks.

2. Stability problem in generalized Lotka–Volterra systems

Here we present some results obtained in Redheffer and Walter (1984). Consider a general LV
system given by

U̇i = λiUi + Ui

m∑
j=1

MijUj i = 1, . . . , m. (1)

The variables Ui are real-valued functions and M is a square m × m matrix. The fixed points
of equation (1) in the positive orthant are the solutions of the equations

λi +
m∑

j=1

Mijqj = 0 i = 1, . . . , m qi > 0. (2)

The study of the asymptotic behaviour of (1) was first considered by Volterra (1931),
and other authors have faced this problem since his pioneering work: see Takeuchi (1995)
and references therein. In Redheffer and Walter (1984) the concept of admissible matrix was
introduced to deal with the problem of stability and asymptotic behaviour of LV systems. A
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m × m matrix M is said to be admissible if there are constants ai > 0, i = 1, . . . , m, such
that

m∑
i,j=1

aiMijwiwj � 0 w ∈ R. (3)

This condition implies that Mii � 0, and can hold even in the case of a singular matrix.
The following theorem was proved in Redheffer and Walter (1984).

Theorem 1. If M given in (1) is admissible and there is a fixed point qi in the interior of the
positive orthant then there exists a Lyapunov function Vq with respect to this fixed point, given
by

Vq =
m∑
i=1

ai

(
Ui − qi ln

Ui

qi
− qi

)
(4)

and, furthermore, there exist 2m positive numbers εi, νi such that

εi < Ui(t) < νi ∀ t. (5)

The existence of a Lyapunov function ensures the stability of the interior fixed points of
the LV system, and the LaSalle invariance principle (LaSalle and Lefshets 1961) guarantees
the boundedness of the solutions, i.e. equation (5).

Theorem 1 holds even in the case of a singular matrixM , corresponding to the existence of
degenerated fixed points. The hypotheses Ui(0) > 0, qi > 0, are appropriate in calculations,
but as far the mathematical development is concerned, they can be replaced by

Ui(0)qi > 0 (6)

and all the previous results remains unchanged.

3. General representation of quasi-polynomial systems as Lotka–Volterra equations

A QP dynamical system can be written as

ẋi = lixi + xi

m∑
j=1

Aij

n∏
k=1

x
Bjk

k i = 1, . . . , n (7)

with xi ∈ R
n, where A and B are real, constant rectangular matrices. The number m is related

to the number of monomials in the vector field of equation (7). In Brenig (1988) it was shown
that a QP system of form (7) with m < n can always be decomposed into an equivalent
system with n′ � m equations. Therefore, in all that follows we consider without loss of
generality m � n in equation (7). We also assume that the rank of B is maximal, i.e. it is
equal to n. This represents no restriction at all for the present approach since if the rank is
less than n then the system can be decoupled into a new QP system with a new exponent B ′

whose rank is maximal, see Brenig (1988). The denomination quasi-monomial for
∏

(xk)
Bjk

is used as the exponents Bjk are allowed to be real numbers. This is also the reason for
the denomination of QP differential equations. These equations are ubiquitous in physics,
chemistry and biomathematics.

We introduce m − n extra variables xn+1, xn+2, . . . , xn+m such that

ẋk = 0 k = n + 1, . . . , n + m (8)

and obtain the extended system

ẋi = l̃ixi + xi

m∑
j=1

Ãij

m∏
k=1

x
B̃jk

k i = 1, . . . , m (9)
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where

Ã =



A11 A12 · · · A1m

A21 A22 · · · A2m

· · · · · · · · · · · ·
An1 An2 · · · Anm

0 0 · · · 0
...

...
...

...

0 0 · · · 0


(10)

and

B̃ =


B11 B12 · · · B1n b1,n+1 · · · b1,m

B21 B22 · · · B2n b2,n+1 · · · b2,m
...

...
...

...
...

...
...

Bm1 Bm2 · · · Bmn bm,n+1 · · · bm,m

 . (11)

The parameters bjk are arbitrary with the only restriction that B̃ is invertible. To ensure the
equivalence between (7) and (9), the following initial conditions are imposed:

xk(t = 0) = 1 k = n + 1, . . . , m. (12)

System (9) is covariant under the quasi-monomial transformations

xi =
m∏

β=1

U
Diβ

β (13)

with D invertible. The inverse of the above transformation is given by

Uα =
m∏
i=1

x
D−1

αi

i . (14)

In particular, equation (9) is embedded into a LV-type equation when D is taken to be B̃−1:

U̇α = (B̃l̃)αUα + Uα

m∑
β=1

(B̃Ã)αβUβ α = 1, . . . , m. (15)

Now let us define the characteristic matrix M ≡ BA = B̃Ã and λ ≡ Bl = B̃l̃, which
identifies (15) as a LV system of type (1). Therefore, every QP system can be cast into a
LV-type system by a suitable embedding defined by equations (9), (12) and the coordinate
transformation in equation (13). Using (12) and (13) we have

m∏
β=1

U
B̃−1
αβ

β = 1 α = n + 1, . . . , m (16)

which defines a subspace of the m-dimensional LV space where lies the original dynamics
of equation (7). So the LV equations (15), with M = BA and λ = Bl, restricted to the
hypersurfaces defined by (16) are equivalent to the QP system (7). Moreover, there is a one-
to-one correspondence between the fixed points of (7) and the points in the intersection of
the hypersurfaces (16) with the fixed points of (15), provided that the coordinates of the fixed
points are all non-zero. Let us restrict ourselves to fixed points in the interior of the positive
orthant. We state the following theorem.

Theorem 2. If the matrix M = BA associated to the QP system (7) is admissible and
there is a fixed point x∗ of (7) in the positive orthant, then the Lyapunov function Vq(U) in
equation (4) can be used to obtain a Lyapunov function V (x) for system (7) from the restriction
in equation (12):

V (x) = Vq(U)
∣∣
xn+1=···=xm=1 (17)
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U and x related by (13), with D = B̃−1, and the fixed points q of the associated LV system
are related to x∗ by

qα =
n∏

i=1

(x∗
i )

Biα . (18)

Proof. For V (x) to be a Lyapunov function the following conditions must hold (Lyapunov
1949):

(a) V (x∗) = 0;
(b) V (x) > 0 if x �= x∗;
(c) dV (x)

dt � 0.

Properties (a) and (b) are obvious since V (x) is a restriction of Vq(U) to a subspace of the
m-dimensional manifold of the coordinates Ui , and Vq(U) satisfies (a) and (b). Property (c)
is immediate: the Lyapunov function Vq(U) satisfies

dVq (U)

dt
� 0 (19)

and therefore

dVq (U)

dt
=

m∑
α=1

∂Vq

∂Uα

dUα

dt
=

m∑
α=1

n∑
i=1

∂Vq

∂Uα

∂Uα

∂xi

dxi
dt

=
n∑

i=1

∂Vq(U(x))

∂xi

dxi
dt

� 0. (20)

The restriction of (20) by equation (12) gives
n∑

i=1

∂Vq(U(x))

∂xi

dxi
dt

∣∣∣∣∣
xn+1=···=xm=1

=
n∑

i=1

∂V (x)

∂xi

dxi
dt

= dV (x)

dt
� 0.

The Lyapunov function V is defined for all points in the positive orthant. �
Let us now state another important result of this paper.

Theorem 3. If the matrix M = BA is admissible and the initial condition is in the positive
orthant, then the corresponding solution is bounded and componentwise bounded away from
zero; that is, if (x1(0), . . . , xn(0)) ∈ R

n
+, then

∃ εi, δi ∈ R | 0 < εi < xi(t) < δi i = 1, . . . , n ∀ t.

Proof. Let us consider the quasi-monomials in equation (7):

Ui =
n∏

k=1

x
Bik

k i = 1, . . . , m. (21)

We reorder the quasi-monomials in (21) such that the first n lines of matrix B are linearly
independent. This is possible as B is of rank n. Let us define a new n × n matrix B̂ by

B̂ij = Bij i, j = 1, . . . , n. (22)

The n first quasi-monomials can then be written as

Ui =
n∏

k=1

x
B̂ik

k . (23)

This transformation of variables can be inverted as B̂ is non-singular:

xi =
n∏

k=1

U
B̂−1
ik

k . (24)
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From theorem 1 each term in the right-hand side of equation (24) is bounded from above and
from below and therefore the same holds for xi . This closes the proof. �

Theorem 4 states sufficient conditions onA andB for the invariance of the positive orthant,
which is far from being a trivial result for QP systems. In fact, the theorem ensures that the
solutions are away from the coordinate planes xi = 0 and bounded.

As for the LV equations, the restriction to the positive orthant is not necessary. In fact,
if the QP system in equation (7) is defined in other orthants, the above results are still valid
provided the initial condition and the fixed point are in the same orthant.

The conditions on the statements of theorems 2 and 3 can be somewhat relaxed as follows.
Let us suppose once again that the quasi-monomial functions Ui in equation (21) are ordered
in such a way that the first lines of B are linearly independent. This ensures the inversibility
of the transformation in equation (23), as explained above. Then the condition ai > 0 in
equation (3) can be replaced by ai � 0 for i = n + 1, . . . , m and ai > 0 for i = 1, . . . , n. The
proof follows the same steps as in the proofs of theorems 2 and 3.

4. Determination of existence conditions for Lyapunov functions

The determination of necessary and sufficient conditions for a general square matrix to be
admissible is an unsolved problem. We present an algebraic procedure that, together with
modern tools of algebraic computation, allows its implementation for a general matrix M

involving only parameters of the system. The idea is to impose successively that a quadratic
function in one of the variables is not positive:

αy2 + βy + γ � 0 ∀y (25)

which is equivalent to

α < 0 and β2 − 4αγ � 0

or

α = β = 0 and γ � 0.

Since (3) is a quadratic form on the w′
i , we group different terms according to their degree in

one of the variables, say ω1:

aiMijwiwj = a1M11w
2
1 + β(w2, . . . , wm)w1 + γ (w2, . . . , wm) � 0. (26)

Equation (26) is a quadratic algebraic inequality in w1 and therefore, as explained above,
one of the following sets of conditions must hold:

a1M11 < 0 and β(w2, . . . , wm)
2 − 4a1γ (w2, . . . , wm) � 0 (27)

or

a1M11 = 0 ⇒ M11 = 0 and β(w2, . . . , wm) = 0

and γ (w2, . . . , wm) � 0.
(28)

Conditions (27) and (28) are independent of w1. The procedure can be iterated for these
inequalities, now in the variables w2, . . . , wm. At each step one set of conditions split in two,
corresponding to the different possibilities to satisfy (25). Therefore, for an m-dimensional
matrixM , corresponding to anm-dimensional LV system (1), we obtain 2m−1 independent sets
of equation and inequality conditions, each set yielding different solutions for the parameters
and the ai

′ such that M is admissible.
Note that this procedure can be handled in different ways either by changing the order in

which thewi
′ are eliminated or by changing the order in which the quasi-monomials in (15) are
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defined. This results in an equivalent set of conditions, since the procedure is exhaustive. This
is a new purely algebraic method to analyse the stability of general QP systems of differential
equations.

5. New results for Lotka–Volterra systems

The existence of a Lyapunov function of form (4) depends strongly on the number of free
parameters in the original system (1) or (15), and therefore on the number of free elements
of M that can be adjusted such that the matrix is admissible. We also note that matrix
M does not depend on the parameters λi or li in equations (1) and (15) and the existence
conditions of a Lyapunov function are independent of their values. Now we show how a
special reparametrization of the time variable ‘mixes’ these parameters with the remaining
ones in M , resulting in different conditions on the parameters of the system, now involving its
linear terms. Let us consider the differential time reparametrization:

dt =
m∏

k=1

x
−B̃γ k

k dt ′ for some k ∈ 1, . . . , m (29)

or dt = U−1
γ dt ′, restricted to those transformations that preserve the sign of t (this is ensured

for instance if the variables xi are restricted to the positive orthant or by using their absolute
values). Also, if we restrict ourselves to the interior of an orthant, there will be no problem
concerning singularities in (29). Let us consider first these transformations in QP systems.
Inserting (29) in (9) we obtain

dx

dt ′
= xiÃir + xi

(
l̃i

m∏
k=1

x
−B̃rk

k +
m∑

j �=r

Ãij

m∏
k=1

x
B̃jk−B̃rk

k

)
. (30)

In this way we obtain a new QP system with different linear terms and with the same number
of quasi-monomials (compare (30) with (9)). We can recast this system into the LV format,
with a new characteristic matrix M ′, as described in section 3. By doing so we are able to
obtain different existence conditions for a Lyapunov function.

This result can be used to obtain new results in purely LV systems. The classical method to
analyse the stability of these systems consists in determining whether the corresponding matrix
M is admissible, which implies the stability of its interior fixed points, with no dependence
on the particular values of the parameters λi . We now show how in some cases it is possible
to obtain Lyapunov functions for LV systems even when the characteristic matrix M is not
admissible. This result is not unexpected from the theoretical point of view, since admissibility
is a condition of sufficiency only. To prove this assertion we apply the transformation (29) in
the LV system (1). Let dt = U−1

k dt ′, for some k ∈ {1, . . . , m}; we obtain

dUi

dt ′
= Ui

(
Mik +

m∑
j �=k

MijUjU
−1
k + λiU

−1
k

)
i = 1, . . . , m. (31)

This reparametrization preserves the sign of the time variable provided the initial condition is in
the interior of the positive orthant, since this orthant is invariant (Hofbauer 1988). System (31)
is now an m-dimensional QP system which can be recast in an m-dimensional LV system by
defining the following matrices B and A, from equation (31):

B =


0 0 . . . −1 . . . 0
1 0 . . . −1 . . . 0
0 1 . . . −1 . . . 0
...

...
...

...
...

...

0 0 . . . −1 . . . 1

 (32)
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with [−1,−1, . . . ,−1]T as the kth column;

A =


λ1 M11 M12 . . . M1,k−1 M1,k+1 . . . M1m

λ2 M21 M22 . . . M2,k−1 M2,k+1 . . . M2m
...

...
...

...
...

...
...

...

λm Mm1 Mm2 . . . Mm,k−1 Mm,k+1 . . . Mmm

 . (33)

System (31) is equivalent to a LV system with characteristic matrix M̃ = BA corresponding
to the evolution of the quasi-monomials:

Vi = Ui/Uk for i �= k Vk = 1/Uk. (34)

The matrix M̃ will involve the λ′
i and may be admissible even when M is not. This enlarges the

possibilities of finding stable cases in LV systems, as a multitude of new time transformations
can be defined. We presented above just an illustrative example of such transformations. We
illustrate this result by analysing the May–Leonard system.

5.1. The May–Leonard system

The May–Leonard system describes three competing populations and was first studied in May
and Leonard (1975):

ẋ1 = l1x1 − x1(x1 + ax2 + bx3)

ẋ2 = l2x2 − x2(bx1 + x2 + ax3)

ẋ3 = l3x3 − x3(ax1 + bx2 + x3).

(35)

In this case the variables xi are identical to the variables Ui defined in section 2. Matrix M is
given here by

M =
[ −1 −a −b

−b −1 −a

−a −b −1

]
. (36)

The conditions for admissibility of this matrix are well known and are given by (see, e.g.,
Hofbauer and Sigmund (1988)):

−1 < a + b < 2 ∀ li ∈ R. (37)

For the sake of brevity, we do not show here how this result can be obtained by using our
procedure described in section 4. Instead we proceed to show how to obtain new conditions
of stability outside the region given by (37).

Performing the time reparametrization dt = x−1
1 dt ′, system (35) is written as

dx1

dt ′
= x1(l1x

−1
1 − 1 − ax−1

1 x2 − bx−1
1 x3)

dx2

dt ′
= x2(l2x

−1
1 − b − x−1

1 x2 − ax−1
1 x3)

dx3

dt ′
= x3(l3x

−1
1 − a − bx−1

1 x2 − x−1
1 x3)

(38)

which is a QP system with matrices B and A as follows:

B =
[ −1 0 0

−1 1 0
−1 0 1

]
(39)

A =
[
l1 −a −b

l2 −1 −a

l3 −b −1

]
. (40)
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The characteristic matrix M̃ = BA is given by

M̃ =
[ −l1 a b

l2 − l1 a − 1 b − a

l3 − l1 a − b b − 1

]
(41)

corresponding to the evolution of the quasi-monomials V1 = x−1
1 , V2 = x2x

−1
1 and

V3 = x3x
−1
1 . Systems (35) and (38) are mathematically equivalent. Therefore, conditions

for the admissibility of M̃ imply the stability of the interior fixed points of (35), which are
given by

q1 = (l1(1 − ba) + l2(b
2 − a) + l3(a

2 − b))

(b3 + a3 − 3ba + 1)

q2 = (l2(1 − ba) + l3(b
2 − a) + l1(a

2 − b))

(b3 + a3 − 3ba + 1)

q3 = (l3(1 − ba) + l1(b
2 − a) + l2(a

2 − b))

(b3 + a3 − 3ba + 1)
.

(42)

This leads to new cases of stability involving l1 and l2 and outside the region −1 < a + b < 2.
Applying our procedure introduced in section 4, we obtain 23−1 = 4 independent sets of
conditions for admissibility. Let us consider the most simple of these sets which gives, after
some algebraic manipulations:

• Conditions 1
l1 = 0

a < 1

a2 = a1(−a/l2) > 0 l2 �= 0

a3 = a1(−b/l3) > 0 l3 �= 0
((a2 − ab)l3 − (b2 − ab)l2)

2 + 4abl2l3(a + b + ab − 1 − a2 − b2) � 0.

(43)

A detailed analysis of the above conditions leads to the conclusion that they are always
satisfied if, for example,

l1 = 0

a = b < 1

a/l2 < 0 l2 �= 0

b/l3 < 0 l3 �= 0.

(44)

By direct substitution, one can show that the above restrictions are sufficient for the last
inequality in (44). Other sufficient conditions are given by

l1 = 0

a < 1

a/l2 = b/l3 < 0 l2 �= 0 l3 �= 0.

(45)

Both the above sets of conditions allow values for a and b outside the range −1 < a+b < 2.
Another set of conditions which is algebraically simple is the following:

• Conditions 2
l1 = 0 l2 = l3

a2 = a1(−a/l2) > 0

a3 = a1(−b/l3) > 0

b � 1 a = 1.

(46)

This set of conditions clearly allows values for a and b outside −1 < a + b < 2.
The two further sets of conditions are a bit more complex algebraically and are given by
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• Conditions 3

a1 = 1

l1 > 0

0 <
2l1 − a(l1 + l2) − 2

√
&1

(l2 − l1)2
< a2 <

2l1 − a(l1 + l2) + 2
√
&1

(l2 − l1)2

&1 = l1(a − 1)(al2 − l1) > 0
[(l1 − l3)

2a2
3 + 2(bl1 + bl3 − 2l1)a3 + b2][((1 − b)l1 + (b − a)l2 + (a − 1)l3)

2a2
3

+(2l3(1 − a)(b − a2) + 2l2(2a − b2 − 2a2 − a2b + a3 + 2b2a − ba)

+2l1(2ba + b − 2 − b2 − a2b + 2a − a2))a3

+(b − a2)2] � 0.

(47)

• Conditions 4

l1 > 0

a2 = a1
2l1 − a(l1 + l2) ± 2

√
l1(a − 1)(al2 − l1)

(l2 − l1)2
> 0

a3 = a1
(
l21(4a − 2a2 − 2b) + l1l2(4ab − 2a2 − 2b) ± 2(l1(2a − b) − l2b)

√
&1

)
×{

(l1a − 2l1b + al3)(l2 − l1)
2 + 2l1l2l3 + l31(2 − a) + l22a(l1 − l3)

+l21(l3a − 2l3 − 2l2) ± 2&4

√
&1

}−1
> 0

&2
3(l1 − l3)

2 + 2&2&3(2l1 − b(l1 + l3) + b2&2
2 � 0

(48)

where

&1 = l1(a − 1)(al2 − l1) > 0

&2 = (l1a − 2l1b + al3)(l2 − l1)
2 + 2l1l2l3 + l31(2 − a) − l22 l3a − 2l21 l2

+l22 l1a − 2l21 l3 + l21 l3a ± 2(l2l3 + l21 − l2l1 − l1l3)
√
&1

&3 = ab(l2 − l1)
2 + l21(2a

2 − 4a + 2b − ba) − 2l22ba + 2l1l2(a
2 − ab + b)

±(−4al1 + 2l1b + 2l2b)
√
&1

&4 = −l1l2 − l1l3 + l2l3 + l21 .

The plus–minus sign in conditions 4 means that we have in fact two independent sets of
conditions.

A detailed analysis of each one of the above conditions would not be suitable here. One
can attempt to search for values of a and b outside the interval −1 < a+b < 2 with reasonable
constraints in the l′i , or alternatively attempt to use other time reparametrizations than the one
considered here.

The Lyapunov function is obtained from (4) with the monomials given by Vj in (34),
which are related to (38), and therefore the corresponding fixed points are given by

q∗
1 = 1/q1 q∗

2 = q2/q1 and q∗
3 = q3/q1

with q1, q2 and q3 given in (42). Explicitly, we have

V = a1

(
1 + a2x2 + a3x3

x1
− q∗

1 − a2q
∗
2 − a3q

∗
3 − q∗

1 ln(1/x1q
∗
1 )

−a2q
∗
2 ln(x2/x1q

∗
2 ) − a3q

∗
3 ln(x3/x1q

∗
3 )

)
.

Using the permutation symmetry of (35) one can obtain other stability conditions and
Lyapunov functions by a suitable permutation of the indices and of the parameters a and b.
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6. Application to a quasi-polynomial system

In this section we apply our approach to a system describing the nonlinear coupling of three
modes in plasma waves.

6.1. Three-wave interaction problem

We consider here the problem of nonlinear interaction of three waves, which is an
approximation for a general description of coupling in various fields of physics (Weiland
and Wilhelmson 1977). The set of equations are given by

ẋ1 = λ1x1 + x1

[ 3∑
j=1

N1j x
2
j

]
+ γ1x2x3

ẋ2 = λ2x2 + x2

[ 3∑
j=1

N2j x
2
j

]
+ γ2x1x3

ẋ3 = λ3x3 + x3

[ 3∑
j=1

N3j x
2
j

]
+ γ3x1x2

(49)

where the γi ′, Nij
′ and λi

′ are real parameters. System (49) can be cast into a six-dimensional
LV system. Let us consider the particular case γ2 = γ3 = 0, γ3 ≡ γ . In this case, (49) can be
recast into a four-dimensional LV system with quasi-monomial variables U1 = x2

1 , U2 = x2
2 ,

U3 = x2
3 and U4 = x−1

1 x2x3. The matrix M is given by

M =


2N11 2N12 2N13 2γ
2N21 2N22 2N23 0
2N31 2N32 2N33 0

−N11 + N21 + N31 −N12 + N22 + N32 −N13 + N23 + N33 −γ

 . (50)

Applying our method, one obtains 24−1 = 8 sets of conditions for the admissibility of (50).
We present in table 1 some of these sets of conditions, leaving aside conditions algebraically
too complex. When one of these sets of conditions hold, we obtain for system (49) a Lyapunov
function, which in this case is given by

V = a1

(
x2

1 − q1 ln
x2

1

q1
− q1 + f

(
x2

2 − q2 ln
x2

2

q2
− q2

)
+ g

(
x2

3 − q3 ln
x2

3

q3
− q3

)
+h

(
x2x3/x1 − q4 ln

x2x3

x1q4
− q4

))
where f , g and h are given in table 1 and the fixed points are given by

q2 = −q1(N23N31 − N33N21) + N33λ2 − λ3N23

N23N32 − N33N22

q3 = q1(N22N31 − N32N21) + N22λ3 − λ2N32

N23N32 − N33N22
q4 = −q1(−N12N23N31 + N12N33N21 + N22N13N31

+N11N23N32 − N11N33N22 − N13N21N32 + (N12N33 − N13N32)λ2

−(N12N23 − N22N13)λ3

+(N23N32 − N33N22)λ1)/γ1(N23N32 − N33N22))

(51)

with q1 arbitrary.
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Table 1. Conditions of stability for the three-wave system with γ2 = γ3 = 0.

Conditions 1 N11 = 0 a2 = f a1

N22 < 0 a3 = ga1

f = −N12/N21 > 0 a4 = ha1

g = −N13/N31 > 0
h = −2γ /(N21 + N31) > 0

N2
13N

2
32N

2
21 − 4N12N22N13N33N31N21 + N2

12N
2
23N

2
31

+2N12N23N13N32N31N21 = 0

−N12N23N32N31 + N2
12N23N31 + 2N12N22N33N31 + N13N32N12N21

−N13N32N22N21 + N12N23N22N31 − N13N
2
32N21 − 2N12N22N13N31 = 0

2N32N22N21 + 2N12N22N21 + N2
32N21 + N2

12N21 + N2
22N21

+4N12N22N31 − 2N32N12N21 � 0

Conditions 2 N11 = 0 a2 = f a1

N22 < 0 a3 = ga1

f = −N12/N21 > 0 a4 = ha1

g = −N13/N31 > 0
h = −2γ /(N21 + N31) > 0

N2
13N

2
32N

2
21 − 4N12N22N13N33N31N21

+N2
12N

2
23N

2
31 + 2N12N23N13N32N31N21 < 0

N22(−N2
13N

2
32N

3
21 − N2

12N
2
23N

3
31 − N12N23N32N33N21N

2
31

−N23N
2
32N13N

2
21N31 − N12N

2
23N32N21N

2
31 − N12N23N32N13N21N

2
31

+N2
12N23N33N21N

2
31 − N12N23N32N13N

2
21N31 − N2

12N23N13N21N
2
31

−N12N33N13N32N
2
21N31 + N22N33N13N32N

2
21N31 + N12N22N33N23N21N

2
31

+2N12N22N33N13N21N
2
31 − N2

13N32N12N
2
21N31 − N13N32N22N23N

2
21N31

+N2
13N32N22N

2
21N31 − N12N23N22N13N21N

2
31 + N12N22N

2
13N21N

2
31

+2N12N22N33N13N
2
21N31 + N2

12N13N33N
2
21N31 + N2

22N13N33N
2
21N31) � 0

Conditions 3 N11 < 0 a2 = f a1

f = 2N11N22 − N12N21 ± √
N22N11(N11N22 − N12N21)/N

2
21 > 0 a3 = ga1

a4 = ha1

g = (f [2N11N23 − N21N13] − N13N12)/(fN21N31 − 2N11N32 + N12N31) > 0

h = −2γ (gN31 + N13)/(N21N13

+N13N11 − 2N11N23 + N31N13 − 2N11N33

+g[N21N31 + N2
31 − N31N11]) > 0

2γ (N12 + fN21) + h(−2N11N22 + N12[N11 + N21 + N31] − 2N11N32)

+f h(N2
21N21N31 − N21N11) = 0

N2
13 + (2N31N13 − 4N11N33)g + g2N2

31 = 0
4γ 2 + (N21 + N11 + N31)4γ h + ((N31 − N11)

2 + N21[N21 + N31 − 2N11])h2 � 0

Conditions involving the λi
′ can be obtained by performing a reparametrization in the

time variable. In table 2 we present some results obtained from the specific case dt = U−1
1 dt ′

and the corresponding Lyapunov function.
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Table 2. Conditions for the three-wave system with the corresponding Lyapunov functions with
dt = U−1

1 dt ′.

Conditions 1 λ1 = 0 a2 = f a1

f = N12/λ2 > 0 a3 = ga1

g = N13/λ3 > 0 a4 = ha1

h = 2γ /λ2 + λ3 > 0
N22 = N12

N33 = N13

γ = (N23 − 3N13)(−N32 + 2N12)

N12(N23 − 2N13)
� 0

λ2 = (N23 − 3N13)λ3

N13
2N12N13 + N32N23 − 3N13N32 = 0

Conditions 2 λ1 = 0 a2 = f a1

f = N12/λ2 > 0 a3 = ga1

g = N13/λ3 > 0 a4 = ha1

h = 2γ /λ2 + λ3 > 0
N22 − N12 = 0

λ3N12(N23 − N13) − λ2(N12 − N32)N13 = 0

−γN12(λ2 + λ3) − λ2(N32 + N22 − 3N12) = 0
N33 − N13 < 0

(4N2
13 + 4N13N33 − 8N13N23 + N2

33 + 2N33N23 + N2
23)λ

2
3

+(−4N2
13 + 10N13N33 − 2N13N23)λ2λ3 + N2

13λ
2
2 � 0

Conditions 3 λ1 > 0 a2 = f a1

a3 = ga1

f = λ1(N12 − 2N22) + N12λ2 ± 2
√
λ1(N12 − N22)(N12λ2 − λ1N22)

(λ1 − λ2)2
> 0

a4 = ha1

g = f (λ1(2N23 − N13) − λ2N13 + N12N13)

f (λ1(λ2 + λ3 − λ1) − λ2λ3) + N12λ3 + N12λ1 − 2λ1N32)
> 0

h = 2γ (f (−λ1 − λ2) + N12)/(f (λ1λ3 + 4λ1λ2 − 3λ2
1 − λ2λ3 − λ2

2)

+N12(3λ1 + λ3 + λ2) − 2λ1N32 − 2λ1N22 > 0
g2(λ1 − λ3)

2 + 2g(λ1(2N33 − N13) − λ3N13) + N2
13 = 0

g(h(λ2
3 + 3λ2

1 + λ2λ3 − 4λ1λ3 − λ2λ1) − 2λ3γ − 2λ1γ )

+(2λ1[N23 + N33) + N13(−λ2 − λ3 − 3λ1))h + 2N13γ = 0

h2((λ2 + λ3)
2 + 3λ1(3λ1 − 2λ2 − 2λ3)) + 4hγ (−λ3 − 3λ1 − λ2) + 4γ 2 � 0

Lyapunov function V = a1((1 + f x2
2 + gx2

3 + hx2x3x
−1
1 )/x2

1
−q∗

1 − f q∗
2 − gq∗

3 − hq∗
4 − q∗

1 ln(1/x2
1q

∗
1 )

−f q∗
2 ln(x2

2/x
2
1q

∗
2 )

−gq∗
3 ln(x2

3/x
2
1q

∗
3 ) − hq∗

4 ln(x2x3/x
3
1q

∗
4 ))

q∗
1 = 1/q1; q∗

2 = q2/q1; q∗
3 = q3/q1; q∗

4 = q4/q1

We note that the conditions in table 1 involve only the parameters Nij . Therefore, the
conditions of stability will prevail whatever the particular values of the linear parameters λi .
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In table 2 the parameters N11, N21 and N31 are not present, but the conditions involve the λ′
i ,

as, for example, the first condition from table 2.
Several conditions for the general case γi �= 0 were obtained, but are not shown here for

reasons of economy of space.

7. Numerical method

The method described in section 4 is suitable for analysing matrices M whose parameters are
given algebraically. However, in many cases the numerical values of the parameters of the
system are known, or are at least limited to a small range. In such cases it is suitable to present
a numerical version of our approach. Specifically, we address the following question: given a
real matrix M , with all its entries specified, determine if such matrix is admissible or not and,
if the answer is affirmative, provide the set of numbers ai > 0. The authors have developed
such an algorithm, which will be the subject of a forthcoming paper.

This approach is not a numerical version of the algebraic method described in section 4.
Indeed, it makes use of techniques very usual in system and control theory, and is based on
linear programming.

8. Conclusions

The universal format of the LV equations provides a powerful tool for obtaining new methods
for the study of arbitrary nonlinear systems (Moreau et al 1999). The pioneering work of
Volterra showed the importance of the concept of admissible matrices in the study of the stability
problem, which was later extended by other authors. In this paper we have extended the analysis
to general QP systems, which is an attempt towards a universal method for the determination
of Lyapunov functions applicable to a broad class of ordinary differential equations.

Furthermore, the time reparametrization (29) increases the scope of applications even for
purely LV systems, as shown by the new conditions of stability obtained for the May–Leonard
system, involving its linear terms, improving the known results in the literature for this system.
Our approach has no restrictions concerning the dimension of the system. However, when the
conditions obtained are too complex, a numerical algorithm for solving (3) is needed. This
procedure is well suited for larger systems and will be the subject of a forthcoming paper.
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